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Sophie’s world

Софья Васильевна Ковалевская, 1850–1891



Sophie’s world: the story of the history of integrability

Acta Mathematica, 1889



Addition Theorems

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y

sn (x + y) =
sn x cn y dn y + sn y cn x dn x

1 − k2 sn 2x sn 2y

cn (x + y) =
cn x cn y − sn x sn y dn x dn y

1 − k2 sn 2x sn 2y

℘(x + y) = −℘(x) − ℘(y) +
1

4

(

℘′(x) − ℘′(y)

℘(x) − ℘(y)

)2



The Quantum Yang-Baxter Equation

R12(t1−t2, h)R13(t1, h)R
′23(t2, h) = R23(t2, h)(R13(t1, h)R12(t1−t2, h)

R ij(t, h) : V ⊗ V ⊗ V → V ⊗ V ⊗ V

t – spectral parameter
h – Planck constant



The Euler-Chasles correspondence

E : ax2y2 + b(x2y + xy2) + c(x2 + y2) + 2dxy + e(x + y) + f = 0



The Euler-Chasles correspondence

The Euler equation

dx
√

p4(x)
±

dy
√

p4(y)
= 0

Poncelet theorem for triangles



Elliptical Billiard



Billiard within ellipse

A trajectory of a billirad within an ellipse is a polygonal line with
vertices on the ellipse, such that successive edges satisfy the billiard
reflection law: the edges form equal angles with the to the ellipse at
the common vertex.



Focal property of ellipses


focal_ellipse.avi
Media File (video/avi)



Focal property of ellipses



Focal property of ellipses



Caustics of billiard trajectories


caustics.avi
Media File (video/avi)



Caustics of billiard trajectories



Poncelet theorem (Jean Victor Poncelet, 1813.)
Let C and D be two given conics in the plane. Suppose there exists
a closed polygonal line inscribed in C and circumscribed about D.
Then, there are infinitely many such polygonal lines and all of them
have the same number of edges. Moreover, every point of the conic
C is a vertex of one of these lines.



Mechanical interpretation of the Poncelet theorem
Let us consider closed trajectory of billiard system within ellipse E .
Then every billiard trajectory within E , which has the same caustic
as the given closed one, is also closed. Moreover, all these
trajectories are closed with the same number of reflections at E .



Непериодичне билиjарске траjекториjе



Generalization of the Darboux theorem

Тheorem

Let E be an ellipse in E2 and (am)m∈Z, (bm)m∈Z be two sequences
of the segments of billiard trajectories E , sharing the same caustic.
Then all the points am ∩ bm (m ∈ Z) belong to one conic K,
confocal with E .



Moreover, under the additional assumption that the caustic is an
ellipse, we have:
if both trajectories are winding in the same direction about the
caustic, then K is also an ellipse; if the trajectories are winding in
opposite directions, then K is a hyperbola.



For a hyperbola as a caustic, it holds:
if segments am, bm intersect the long axis of E in the same
direction, then K is a hyperbola, otherwise it is an ellipse.



Grids in arbitrary dimension

Тheorem

Let (am)m∈Z, (bm)m∈Z be two sequences of the segments of billiard
trajectories within the ellipsoid E in Ed , sharing the same d − 1
caustics. Suppose the pair (a0, b0) is s-skew, and that by the
sequence of reflections on quadrics Q1, . . . ,Qs+1 the minimal
billiard trajectory connecting a0 to b0 is realized.

Then, each pair (am, bm) is s-skew, and the minimal billiard
trajectory connecting these two lines is determined by the sequence
of reflections on the same quadrics Q1, . . . ,Qs+1.



Кandinsky, Grid 1923.



Pencil of conics

Two conics and tangential pencil

C1 : a0w
2
1 + a2w

2
2 + a4w

2
3 + 2a3w2w3 + 2a5w1w3 + 2a1w1w2 = 0

C2 : w2
2 − 4w1w3 = 0

Coordinate pencil

F (s, z1, z2, z3) := det M(s, z1, z2, z3) = 0

M(s, z1, z2, z3) =









0 z1 z2 z3

z1 a0 a1 a5 − 2s
z2 a1 a2 + s a3

z3 a5 − 2s a3 a4









F := H + Ks + Ls2 = 0



Darboux coordinates

tC2
(ℓ0) : z1ℓ

2
0 + z2ℓ0 + z3 = 0

ẑ1ℓ
2 + 2ẑ2ℓ+ ẑ3 = 0

ẑ1 = 1, ẑ2 = −
x1 + x2

2
, ẑ3 = x1x2

F (s, x1, x2) = L(x1, x2)s
2 + K (x1, x2)s + H(x1, x2)

H(x1, x2) = (a2
1 − a0a2)x

2
1 x2

2 + (a0a3 − a5a1)x1x2(x1 + x2)

+ (a2
5 − a0a4)(x

2
1 + x2

2 ) + (2(a5a2 − a1a3) +
1

2
(a2

5 − a0a4)x1x2

+ (a1a4 − a3a5))(x1 + x2) + a2
3 − a2a4

K (x1, x2) = −a0x
2
1 x2

2 + 2a1x1x2(x1 + x2) − a5(x
2
1 + x2

2 ) − 4a2x1x2

+ 2a3(x1 + x2) − a4

L(x1, x2) = (x1 − x2)
2



Тheorem

(i) There exists a polynomial P = P(x) such that the
discriminant of the polynomial F in s as a polynomial in
variables x1 and x2 separates the variables:

Ds(F )(x1, x2) = P(x1)P(x2). (1)

(ii) There exists a polynomial J = J(s) such that the discriminant
of the polynomial F in x2 as a polynomial in variables x1 and s

separates the variables:

Dx2
(F )(s, x1) = J(s)P(x1). (2)

Due to the symmetry between x1 and x2 the last statement
remains valid after exchanging the places of x1 and x2.



Lemma

Given a polynomial S = S(x , y , z) of the second degree in each of
its variables in the form:

S(x , y , z) = A(y , z)x2 + 2B(y , z)x + C (y , z).

If there are polynomials P1 and P2 of the fourth degree such that

B(y , z)2 − A(y , z)C (y , z) = P1(y)P2(z), (3)

then there exists a polynomial f such that

DyS(x , z) = f (x)P2(z), DzS(x , y) = f (x)P1(y).



Discriminantly separable polynoiamls – definition
For a polynomial F (x1, . . . , xn) we say that it is discriminantly
separable if there exist polynomials fi(xi ) such that for every
i = 1, . . . , n

Dxi
F (x1, . . . , x̂i , . . . , xn) =

∏

j 6=i

fj(xj ).

It is symmetrically discriminantly separable if

f2 = f3 = · · · = fn,

while it is strongly discriminatly separable if

f1 = f2 = f3 = · · · = fn.

It is weakly discriminantly separable if there exist polynomials f
j
i (xi )

such that for every i = 1, . . . , n

Dxi
F (x1, . . . , x̂i , . . . , xn) =

∏

j 6=i

f i
j (xj ).



Тheorem

Given a polynomial F (s, x1, x2) of the second degree in each of the
variables s, x1, x2 of the form

F = s2A(x1, x2) + 2B(x1, x2)s + C (x1, x2).

Denote by TB2−AC a 5 × 5 matrix such that

(B2
− AC )(x1, x2) =

5
∑

j=1

5
∑

i=1

T
ij

B2−AC
x i−1
1 x

j−1
2 .

Then, polynomial F is discriminantly separable if and only if

rank TB2−AC = 1.



Geometric interpretation of the Kowalevski fundamental
equation

Q(w , x1, x2) := (x1 − x2)
2w2

− 2R(x1, x2)w − R1(x1, x2) = 0

R(x1, x2) = − x2
1 x2

2 + 6ℓ1x1x2 + 2ℓc(x1 + x2) + c2
− k2

R1(x1, x2) = − 6ℓ1x
2
1 x2

2 − (c2
− k2)(x1 + x2)

2
− 4cℓx1x2(x1 + x2)

+ 6ℓ1(c
2
− k2) − 4c2ℓ2

a0 = − 2 a1 = 0 a5 = 0

a2 = 3ℓ1 a3 = −2cℓ a4 = 2(c2
− k2)



Geometric interpretation of the Kowalevski fundamental
equation

Тhеоrem

The Kowalevski fundamental equation represents a point pencil of
conics given by their tangential equations

Ĉ1 : − 2w2
1 + 3l1w

2
2 + 2(c2

− k2)w2
3 − 4clw2w3 = 0;

C2 : w2
2 − 4w1w3 = 0.

The Kowalevski variables w , x1, x2 in this geometric settings are the
pencil parameter, and the Darboux coordinates with respect to the
conic C2 respectively.



Multi-valued Buchstaber-Novikov groups

n-valued group on X

m : X × X → (X )n, m(x , y) = x ∗ y = [z1, . . . , zn]

(X )n — symmetric n-th power of X

Associativity

Equality of two n2-sets:

[x ∗ (y ∗ z)1, . . . , x ∗ (y ∗ z)n] и [(x ∗ y)1 ∗ z , . . . , (x ∗ y)n ∗ z]

for every triplet (x , y , z) ∈ X 3.

Unity e

e ∗ x = x ∗ e = [x , . . . , x] for each x ∈ X .

Inverse inv : X → X

e ∈ inv(x) ∗ x , e ∈ x ∗ inv(x) for each x ∈ X .



Multi-valued Buchstaber-Novikov groups

Action of n-valued group X on the set Y

φ : X × Y → (Y )n

φ(x , y) = x ◦ y

Two n2-multi-subsets in Y :

x1 ◦ (x2 ◦ y) и (x1 ∗ x2) ◦ y

are equal for every triplet x1, x2 ∈ X , y ∈ Y .
Additionally , we assume:

e ◦ y = [y , . . . , y ]

for each y ∈ Y .



Two-valued group on CP
1

The equation of a pencil

F (s, x1, x2) = 0

Isomorphic elliptic curves

Γ1 : y2 = P(x) deg P = 4

Γ2 : t2 = J(s) deg J = 3

Canonical equation of the curve Γ2

Γ2 : t2 = J ′(s) = 4s3
− g2s − g3

Birational morphism of curves ψ : Γ2 → Γ1

Induced by fractional-linear mapping ψ̂ which maps zeros of the
polynomial J ′ and ∞ to the four zeros of the polynomial P .



Double-valued group on CP
1

There is a group structure on the cubic Γ2. Together with its
soubgroup Z2, it defines the standrad double-valued group
structure on CP

1:

s1∗c s2 =

[

−s1 − s2 +

(

t1 − t2

2(s1 − s2)

)2

,−s1 − s2 +

(

t1 + t2

2(s1 − s2)

)2
]

,

where ti = J ′(si), i = 1, 2.

Тheorem

The general pencil equation after fractional-linear transformations

F (s, ψ̂−1(x1), ψ̂
−1(x2)) = 0

defines the double valued coset group structure (Γ2,Z2).



C
4 Γ1 × Γ1 × C Γ2 × Γ2 × C

Γ1 × Γ1 × C × C CP
1 × C

C × C CP
1 × C

CP
2 CP

2
× C/ ∼

-
iΓ1

×iΓ1
×m

?

iΓ1
×iΓ1

×id×id

Q
Q

Q
Q

QQs

ia×ia×m

?

p1×p1×id

-
ψ−1×ψ−1×id

�
�

�
�

�
�

�
�

�
�

�
�

��+

p1×p1×id

?

ϕ1×ϕ2

?

ψ̂−1×ψ̂−1×id

?

m2

?

mc×τc

� f



Double-valued group CP
1

Тhеоrem

Associativity conditions for the group structure of the
double-valued coset group (Γ2,Z2) and for its action on Γ1 are
equivalent to the great Poncelet theorem for a triangle.
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