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Cosmology - remember

For other matter content than the scalar field, the Cosmo library is providing
again the stress-energy tensor as a perfect fluid one :

T = (p+ p)u't’ + pg"
with corresponding pressure and density variables.

The main cosmological parameters and functions, namely the Hubble
"constant" and the deceleration function are :

H(t) = }%) o) — -1
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Reverse engineerng remember

In the standard cosmology the Friedmann eqs. are solved for a specific potential
of the scalar field, initially prescribed from certain physical arguments, and then
the time function R(t) is obtained and compared with the astrophysical

measurements.

In the "reverse-engineering"” method, the function R(t) is initially prescribed, as
much as possible close to the measurements, and then the potential V(t) is

obtained from Friedmann eqs, if it is possible !
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More examples

A new type of density factor is introduced :
p=1py

suggested in the recent literature and from the experimental measurements
on the quantitative proportions between barionic, radiative, dark matter and
dark energy.

Remark : it is very improbable that this density factor is constant for long
time evolution !

Thus we have here an approximation - our results are good for
prescribing initial data for numerical simulations !

This was the purpose of our next investigations ilustrated here in what
follows



More examples
Thus, for matter as a perfect fluid we have, as usual :
p=(y—1p="0y—1)pg
where, of course, we have :

vy=1;p=0 dust pressureless matter

v = 4/3;]9 — ,0/3 radiative matter

Following the same steps as in the previous simple example - l.e. solving the
Friedman egs, Klein-Gordon and the conservation law egs. (Ecunrl...Ecunr3,
EcuKG) we have, finally :
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o(t) = ¢g + B'Int

3(k + 1)

Vig) = [47r(1 o) P




Dust matter (p=0) with scalar field

Convergence test — EM pot. nr. 5, k=1
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Radiative matter with scalar field
Convergence test — EM pot. nr. 5, O=0.5, k=1
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Dust matter (p=0) with scalar field

Time evolution of the scale factor — EM pot. Nnr. 5, k=1
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Radiative matter with scalar field

Time evolution of the scale factor — EM pot. nr. 5, k=1
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Dust matter (p=0) with scalar field

Time evolution of the scalar field — EM pot. nr. 5, k=1
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Radiative matter with scalar field

Time evolution of the Hubbkle function — EM pot. nr. 5, k=1
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DeSltter exponential expansion

The final step : expressing V(t) in terms of the scalar field to obtain :

C

V(8) = | (6(6) — o)+

1| 3n)y C 3 72y
24 2(1 + Q)E(é(t) —toh (1 - 016(1 + Q))

where C and D have certain complicated expressions in term of the cosmological
parameters.

We investigated again the convergence of the numerical simulations having
these results as initial data :
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Dust matter (p=0) with scalar field

Convergence test — EM pot. nr. 1, k=1
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Dust matter (p=0) with scalar field
Convergence test — EM pot. nr. 1, k=1
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Dust matter (p=0) with scalar field

Time evolution of the Hubble function — EM pot. nr. 1, k=1
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Dust matter (p=0) with scalar field

Time evolution of the scalar field — EM pot. Nnr. 1, k=1
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Tachionic potentials

Recently it has been suggested that the evolution of a tachyonic condensate
In a class of string theories can have a cosmological significance

(T. Padmanabham, Phys.rev. D, 66, 021301(R) 2002).

This theory can be described by an effective scalar field with a lagrangian of
of the form

=

L=-V(g)yl + 0,¢3'¢

where the tachyonic potential has a positive
maximum at the origin 2 Vig)=Vhat¢dp=0

and has a vanishing minimum where the
potential vanishes 2 V(g)=0at ¢ — +oo

Since the lagrangian has a potential, it seems to be reasonable to expect
to apply successfully the method of " reverse engineering" for this type
of potentials. As it was shown when we deal with spatially homogeneous
geometry cosmology described with the FRW metric above we can use
again a density and a negative pressure for the scalar field as
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Tachionic potentials

We also have a new Klein-Gordon equation, namely :

V(t)?
1— g(t)?

SV
=0

+IVH O + e

All these results are then saved in a new library, cosmotachi.m which will
replace the cosmo.m library we described in the previous lecture.

Now following the REM method we have finally :
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which we used to process different types of scale factor, same as in
The Ellis-Madsen potentials above
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End of part Ill and
The End

Thank you !
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