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Cosmology - remember

The Cosmo library is processing Einstein equations :

for the Friedmann-Robertson-Walker metric

where k=1,-1,0 and R(t) is the scale factor of the Universe
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Cosmology remember

The matter content of the Universe is described by the stress-energy tensor :

as a scalar field coupled minimally with the gravity and other matter fields
separately. Thus we have :

where, as for a perfect fluid :
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Cosmology - remember
For other matter content than the scalar field, the Cosmo library is providing 
again the stress-energy tensor as a perfect fluid one :

with corresponding pressure and density variables.

The main cosmological parameters and functions, namely the Hubble 
"constant" and the deceleration function  are :
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The Cosmo library remember
Cosmo library  is providing the Klein-Gordon and the conservation law
for the scalar field, namely :

and the Friedmann equations :
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Reverse engineerng remember

In the standard cosmology the Friedmann eqs. are solved for a specific potential
of the scalar field, initially prescribed from certain physical arguments, and then 
the time function R(t) is obtained and compared with the astrophysical 
measurements.

In the "reverse-engineering" method, the function R(t) is initially prescribed, as
much as possible close to the measurements, and then the potential V(t) is 
obtained from Friedmann eqs, if it is possible !
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Reverse engineerng remember

Ellis-Madsen potentials….
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More examples

A new type of density factor is introduced :

suggested in the recent literature and from the experimental measurements
on the quantitative proportions between barionic, radiative, dark matter and 
dark energy.

Remark : it is very improbable that this density factor is constant for long 
time evolution !

Thus we have here an approximation - our results are good for 
prescribing initial data for numerical simulations !

This was the purpose of our next investigations ilustrated here in what 
follows
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More examples

Thus, for matter as a perfect fluid we have, as usual :

where, of course, we have :

dust pressureless matter

radiative matter

Following the same steps as in the previous simple example - I.e. solving the 
Friedman eqs, Klein-Gordon and the conservation law eqs. (Ecunr1...Ecunr3, 
EcuKG) we have, finally :
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More examples

These were obtained after a series of solve, subs and simplify commands.

Only Maple commands manipulation !

Conclusion : Cosmo library can be used even by those nonfamiliar with 
GrTensorII !
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More examples

From now one the things are depending on how complex are the above 
equations. Mainly we have troubles with the second one !

Some of the examples we processed are with exact analytical solutions, 
some need certain approximation assumptions.

In searching initial data for numerical simulations, the last approximative
solutions can be good, at least a short period after the initial time !
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Linear expansion

An example with simple analytic solution : for linear expansion

we obtained

Where 

Now comes some numerical simulations with these results as initial data. 
We used Cosmo thorn within the Cactus code !
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Linear expansion

Convergence test : linear expansion with dust matter
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Linear expansion

Convergence test : linear expansion with radiative matter
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Linear expansion

Scale factor time behavior with dust matter
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Linear expansion

Scale factor time behavior with radiative matter
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Linear expansion

Scalar field time behavior with dust matter
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Linear expansion

Hubble function time behavior with radiative matter



19

DeSItter exponential expansion

Another example : again the DeSitter exponential expansion :

Here we obtained, for the closed case (k=1) :

Where 

And 
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DeSItter exponential expansion

The final step : expressing V(t) in terms of the scalar field to obtain :

where C and D have certain complicated expressions in term of the cosmological
parameters.

We investigated again the convergence of the numerical simulations having
these results as initial data :
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DeSItter exponential expansion

Convergence test for p=0 and Omega = 0.1
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DeSItter exponential expansion

Convergence test for p=0 and Omega = 0.3
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DeSItter exponential expansion

Hubble function time evolution
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DeSItter exponential expansion

Scalar field time evolution



25

Tachionic potentials

Recently it has been suggested that the evolution of a  tachyonic condensate 
in a class of string theories can have a cosmological significance
(T. Padmanabham, Phys.rev. D, 66, 021301(R) 2002).
This theory can be described by an effective scalar field with a lagrangian of 
of the form 

where the tachyonic potential  has a positive 
maximum at the origin                                   

and has a vanishing minimum where the 
potential vanishes                                         

Since the lagrangian has a potential, it seems to be reasonable to expect
to apply successfully the method of ``reverse engineering'' for this type
of potentials. As it was shown when we deal with spatially homogeneous 
geometry cosmology described with the FRW metric above we can use 
again a density and a negative pressure for the scalar field as 
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Tachyonic potentials

and 

Now following the same steps as explained before we have the new
Friedmann equations as : 

With matter included also. Here as usual we have 
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Tachionic potentials

We also have a new Klein-Gordon equation, namely :

All these results are then saved in a new library, cosmotachi.m which will
replace the cosmo.m library we described in the previous lecture.

Now following the REM method we have finally :

which we used to process different types of scale factor, same as in
The Ellis-Madsen potentials above
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Tachionic potentials

Tachionic potentials. Here we denoted with R0 the scale factor
at the actual time t0 and with α the quantity φ(t) – φ0
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End of part III and 
The End 

Thank you !


